Close

Vector Class

The vector class holds a single 3 component vector. A vector describes a direction in space, and it's important to use a vector or Position as appropriate for the data that is being calculated. When being multiplied by a Matrix, this class will implicitly have a 4th component (W component) of 0. A new vector can be created without any arguments, with 3 arguments for the x,y,z values, or with a single argument which is a variable that has 3 entries such as a list of length 3, or a position or vector.

Note: tdu.___ and TDU.___ can be used interchangeably. In general, TDU.___ is used to represent a class, while tdu.___ is used for the instantiator function.

Examples of creating a vector:

v = tdu.Vector() # starts as (0, 0, 0)
v2 = tdu.Vector(0, 0, -1)
values = [0, 1, 0]
v3 = tdu.Vector(values)

# vectors can be accessed like Python lists
print(v3[1])	# same as v3.y
v3[2] = 1		# same as v3.z



TDU.Vector(*args)TDU.Vector:

Create a new vector object. The following argument forms are valid instantiators:

  • tdu.Vector() - (0, 0, 0)
  • tdu.Vector(vector : TDU.Vector) - copy the vector
  • tdu.Vector(position: TDU.Position) - copy the position values
  • tdu.Vector(x : float, y : float, z : float) - (x, y, z)
  • tdu.Vector(f : float) - (f, f, f)
  • tdu.Vector(vec : list) - 3 item list to fill vector

}}

Members

xfloat :

Gets or sets the X component of the vector.

yfloat :

Gets or sets the Y component of the vector.

zfloat :

Gets or sets the Z component of the vector.

Methods

angle(vec)float:

Returns the angel (in degrees) between the current vector and specified vector (vec).

d = v.angle(v2)

scale(x, y, z)None:

Scales each component of the vector by the specified values.

  • x, y, z - The values to scale each component of the vector by.
v.scale(1, 2, 1)

normalize()None:

Makes the length of this vector 1.

m.normalize()

length()float:

Returns the length of this vector.

l = m.length()

lengthSquared()float:

Returns the squared length of this vector.

l = v.lengthSquared()

copy()TDU.Vector:

Returns a new vector that is a copy of the vector.

newV = v.copy()

distance(vec)float:

Returns the distance of the current vector to specified vector (vec).

l = v.distance(v2)

lerp(vec2, t)TDU.Vector:

Returns the linear interpolation of this vector and vec2. That is vec1 * (1.0 - t) + vec2 * t, where vec1 is the current vector. The value for t is not restricted to the range [0, 1].

l = v.lerp(v2, t)

slerp(vec2, t)TDU.Vector:

Returns the spherical interpolation of this vector and vec2. The value for t is not restricted to the range [0, 1].

l = v.slerp(v2, t)

dot(vec)float:

Returns the dot product of this vector and the passed vector.

  • vec - The other vector to use to calculate the dot product
d = v.dot(otherV)

cross(vec)TDU.Vector:

Returns the cross product of this vector and the passed vector. The operation is self cross vec.

  • vec - The other vector to use to calculate the cross product.
c = v.cross(otherV)

project(vec1, vec2)None:

Projects this vector onto the plan defined by vec1 and vec2. Both vec1 and vec2 must be normalized. The result may not be normalized.

  • vec1, vec2 - The vectors that specify the plane to project onto. Must be normalized.
v.project(v1, v2)

reflect(vec)None:

Reflects the current vector about the specified vector (vec).

v.reflect(v2)

Special Functions

TDU.Vector[i]float:

Gets or sets the component of the vector specified by i, where i can be 0, 1, or 2.

y = v[1]
v[1] = y * 2.0

TDU.Vector * floatTDU.Vector:

Scales the vector by the give float scalar and returns a new vector as the result.

v = v * 2.0
v = 2.0 * v

TDU.Vector + floatTDU.Vector:

Adds the given scalar to all 3 components of the vector and returns a new vector as the result.

v = v + 5.0
v = 5.0 + v

TDU.Vector - floatTDU.Vector:

Subtracts the given scalar from all 3 components of the vector and returns a new vector as the result.

v = v - 1.5
v = 1.5 - v

TDU.Vector + TDU.VectorTDU.Vector:

Adds the two vectors to create a new vector.

v3 = v1 + v2

TDU.Vector - TDU.VectorTDU.Vector:

Subtracts the two vectors to create a new vector.

v3 = v1 - v2

TDU.Vector += TDU.VectorTDU.Vector:

Adds the 2nd vector to the 1st vector, the 1st vector will contain the result of the operation.

v1 += v2

TDU.Vector += floatTDU.Vector:

Adds the given scalar to all 3 components of the vector, the vector will contain the result of the operation.

v1 += 0.4

TDU.Vector -= TDU.VectorTDU.Vector:

Subtracts the 2nd vector from the 1st vector, the 1st vector will contain the result of the operation.

v1 -= v2

tdu.Matrix * TDU.VectorTDU.Vector:

Multiplies the vector by the matrix and returns the a new vector as the result. Since a Vector is direction only and has no notion of a position, the translate part of the matrix does not get applied to the vector.

v = M * v

TDU.Vector / floatTDU.Vector:

Divides each component of the vector by the scalar and returns the a new vector as the result.

v = v / 0.2

TDU.Vector *= tdu.MatrixTDU.Vector:

Multiplies the vector by the matrix, the vector will contain the result. The vector is multiplied on the right of the matrix. This is the same as doing v = M * v, although more efficient since it doesn't require assigning a new vector to v. Since a Vector is direction only and has no notion of a position, the translate part of the matrix does not get applied to the vector.

v *= M

TDU.Vector *= floatTDU.Vector:

Scales all 3 components of the vector by the given scalar. The vector will contain the result.

v *= 1.1

TDU.Vector *= TDU.VectorTDU.Vector:

Does a component-wise scale of all 3 components of the vector by the components of the 2nd vector. The vector will contain the result.

v1 *= v2

abs(TDU.Vector)TDU.Vector:

Returns a new vector with all 3 components being the absolute value of the given vector's components.

v2 = abs(v1)

-TDU.VectorTDU.Vector:

Returns a new vector with all 3 components being negated.

v2 = -v1

TouchDesigner Build: