OpenColorIO TOP
Summary
The OpenColorIO TOP utilizes the OpenColorIO library (http://opencolorio.org/) to apply various transforms and lookup tables to your textures and images. The default order that the transforms are applied is: Color Space, File, CDL, Output (Display).
This order can be changed using multiple OpenColorIO TOPs in a chain, with any unnecessary transforms toggled off.
The color space of TouchDesigner TOPs is linear, so generally, images inported to TouchDesigner have to be converted to linear, if they are non-linearly encoded.
Parameters - Setup Page
config
- File holding all the relevant information, such as lookup tables, transforms, color spaces, views, and displays. Several sample configurations are provided in the application installation folder /Samples/OpenColorIO.
reloadconfig
- Manually reload the configuration file.
Parameters - Color Space Transform Page
usecolorspacetransform
- Toggle this transform's effect on or off. Color space transforms convert an image from one color space to another.
incolorspace
- Specify the input color space, the color space of the incoming image.
outcolorspace
- Specify the output color space. The image will be converted to this color space from the input color space.
Parameters - File Transform Page
usefiletransform
- Toggle this transform's effect on or off. File transforms apply individual color space conversion files. Various file formats are supported, spi1d and spi3d to name a couple.
filesource
- The file to be loaded.
Note that the file will expect a certain color space and file transforms do not internally handle this, so ensure that the image is in the correct color space before applying the transform or you will get incorrect results.
interpolation
- ⊞ - Interpolation method of the file.
- Nearest
nearest
-
- Linear
linear
-
- Tetrahedral
tetrahedral
-
- Best
best
-
filedirection
- ⊞ - The direction of the transform. To invert the transform, select Inverse.
- Forward
forward
-
- Inverse
inverse
-
Parameters - CDL Transform Page
cdlmode
- ⊞ - Color Decision List - Select this transform's effect on the image, either manually using parameter values or using a color correction file (.cc). https://en.wikipedia.org/wiki/ASC_CDL
- Off
off
-
- Values
values
-
- Color Correction File
ccfile
-
slope
- ⊞ - Adjust the gain.
- X
slopex
-
- Y
slopey
-
- Z
slopez
-
offset
- ⊞ - Adjust the offset.
- X
offsetx
-
- Y
offsety
-
- Z
offsetz
-
power
- ⊞ - Adjust the gamma.
- X
powerx
-
- Y
powery
-
- Z
powerz
-
saturation
- Adjust the saturation.
cdldirection
- ⊞ - The direction of the transform. To invert the transform, select Inverse.
- Forward
forward
-
- Inverse
inverse
-
ccfile
- The slope, offset, power, and saturation information can instead be loaded from a color correction file (.cc).
Parameters - Output Page
useoutput
- Toggle a display transform. Display transforms allow for color space conversion onto specific display devices.
gain
- Adjust exposure applied before the display transform.
display
- Color space of the device that will be used to view the image.
view
- Specifies the color space transform to be applied to the image.
colorspace
- Specifies the input color space.
gamma
- Adjust amount of gamma correction applied after the display transform.
Parameters - Common Page
outputresolution
- ⊞ - quickly change the resolution of the TOP's data.
- Use Input
useinput
- Uses the input's resolution.
- Eighth
eighth
- Multiply the input's resolution by that amount.
- Quarter
quarter
- Multiply the input's resolution by that amount.
- Half
half
- Multiply the input's resolution by that amount.
- 2X
2x
- Multiply the input's resolution by that amount.
- 4X
4x
- Multiply the input's resolution by that amount.
- 8X
8x
- Multiply the input's resolution by that amount.
- Fit Resolution
fit
- Fits the width and height to the resolution given below, while maintaining the aspect ratio.
- Limit Resolution
limit
- The width and height are limited to the resolution given below. If one of the dimensions exceeds the given resolution, the width and height will be reduced to fit inside the given limits while maintaining the aspect ratio.
- Custom Resolution
custom
- Enables the Resolution parameter below, giving direct control over width and height.
resolution
- ⊞ - Enabled only when the Resolution parameter is set to Custom Resolution. Some Generators like Constant and Ramp do not use inputs and only use this field to determine their size. The drop down menu on the right provides some commonly used resolutions.
- W
resolutionw
-
- H
resolutionh
-
resmult
- Uses the Global Resolution Multiplier found in Edit>Preferences>TOPs. This multiplies all the TOPs resolutions by the set amount. This is handy when working on computers with different hardware specifications. If a project is designed on a desktop workstation with lots of graphics memory, a user on a laptop with only 64MB VRAM can set the Global Resolution Multiplier to a value of half or quarter so it runs at an acceptable speed. By checking this checkbox on, this TOP is affected by the global multiplier.
outputaspect
- ⊞ - Sets the image aspect ratio allowing any textures to be viewed in any size. Watch for unexpected results when compositing TOPs with different aspect ratios. (You can define images with non-square pixels using xres, yres, aspectx, aspecty where xres/yres != aspectx/aspecty.)
- Use Input
useinput
- Uses the input's aspect ratio.
- Resolution
resolution
- Uses the aspect of the image's defined resolution (ie 512x256 would be 2:1), whereby each pixel is square.
- Custom Aspect
custom
- Lets you explicitly define a custom aspect ratio in the Aspect parameter below.
aspect
- ⊞ - Use when Output Aspect parameter is set to Custom Aspect.
- Aspect1
aspect1
-
- Aspect2
aspect2
-
inputfiltertype
- ⊞ - This controls pixel filtering on the input image of the TOP.
- Nearest Pixel
nearest
- Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
- Interpolate Pixels
linear
- Uses linear filtering between pixels. This is how you get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
- Mipmap Pixels
mipmap
- Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.
fillmode
- ⊞ - Determine how the TOP image is displayed in the viewer.
NOTE:To get an understanding of how TOPs work with images, you will want to set this to Native Resolution as you lay down TOPs when starting out. This will let you see what is actually happening without any automatic viewer resizing.
- Use Input
useinput
- Uses the same Fill Viewer settings as it's input.
- Fill
fill
- Stretches the image to fit the edges of the viewer.
- Fit Horizontal
width
- Stretches image to fit viewer horizontally.
- Fit Vertical
height
- Stretches image to fit viewer vertically.
- Fit Best
best
- Stretches or squashes image so no part of image is cropped.
- Fit Outside
outside
- Stretches or squashes image so image fills viewer while constraining it's proportions. This often leads to part of image getting cropped by viewer.
- Native Resolution
nativeres
- Displays the native resolution of the image in the viewer.
filtertype
- ⊞ - This controls pixel filtering in the viewers.
- Nearest Pixel
nearest
- Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
- Interpolate Pixels
linear
- Uses linear filtering between pixels. Use this to get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
- Mipmap Pixels
mipmap
- Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.
npasses
- Duplicates the operation of the TOP the specified number of times. Making this larger than 1 is essentially the same as taking the output from each pass, and passing it into the first input of the node and repeating the process. Other inputs and parameters remain the same for each pass.
chanmask
- Allows you to choose which channels (R, G, B, or A) the TOP will operate on. All channels are selected by default.
format
- ⊞ - Format used to store data for each channel in the image (ie. R, G, B, and A). Refer to Pixel Formats for more information.
- Use Input
useinput
- Uses the input's pixel format.
- 8-bit fixed (RGBA)
rgba8fixed
- Uses 8-bit integer values for each channel.
- sRGB 8-bit fixed (RGBA)
srgba8fixed
- Uses 8-bit integer values for each channel and stores color in sRGB colorspace.
- 16-bit float (RGBA)
rgba16float
- Uses 16-bits per color channel, 64-bits per pixel.
- 32-bit float (RGBA)
rgba32float
- Uses 32-bits per color channel, 128-bits per pixels.
- 10-bit RGB, 2-bit Alpha, fixed (RGBA)
rgb10a2fixed
- Uses 10-bits per color channel and 2-bits for alpha, 32-bits total per pixel.
- 16-bit fixed (RGBA)
rgba16fixed
- Uses 16-bits per color channel, 64-bits total per pixel.
- 11-bit float (RGB), Positive Values Only
rgba11float
- A RGB floating point format that has 11 bits for the Red and Green channels, and 10-bits for the Blue Channel, 32-bits total per pixel (therefore the same memory usage as 8-bit RGBA). The Alpha channel in this format will always be 1. Values can go above one, but can't be negative. ie. the range is [0, infinite).
- 16-bit float (RGB)
rgb16float
-
- 32-bit float (RGB)
rgb32float
-
- 8-bit fixed (Mono)
mono8fixed
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 8-bits per pixel.
- 16-bit fixed (Mono)
mono16fixed
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
- 16-bit float (Mono)
mono16float
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
- 32-bit float (Mono)
mono32float
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 32-bits per pixel.
- 8-bit fixed (RG)
rg8fixed
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 8-bits per channel, 16-bits total per pixel.
- 16-bit fixed (RG)
rg16fixed
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
- 16-bit float (RG)
rg16float
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
- 32-bit float (RG)
rg32float
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 32-bits per channel, 64-bits total per pixel.
- 8-bit fixed (A)
a8fixed
- An Alpha only format that has 8-bits per channel, 8-bits per pixel.
- 16-bit fixed (A)
a16fixed
- An Alpha only format that has 16-bits per channel, 16-bits per pixel.
- 16-bit float (A)
a16float
- An Alpha only format that has 16-bits per channel, 16-bits per pixel.
- 32-bit float (A)
a32float
- An Alpha only format that has 32-bits per channel, 32-bits per pixel.
- 8-bit fixed (Mono+Alpha)
monoalpha8fixed
- A 2 channel format, one value for RGB and one value for Alpha. 8-bits per channel, 16-bits per pixel.
- 16-bit fixed (Mono+Alpha)
monoalpha16fixed
- A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
- 16-bit float (Mono+Alpha)
monoalpha16float
- A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
- 32-bit float (Mono+Alpha)
monoalpha32float
- A 2 channel format, one value for RGB and one value for Alpha. 32-bits per channel, 64-bits per pixel.
Operator Inputs
- Input 0: -
Info CHOP Channels
Extra Information for the OpenColorIO TOP can be accessed via an Info CHOP.
Common TOP Info Channels
- resx - Horizontal resolution of the TOP in pixels.
- resy - Vertical resolution of the TOP in pixels.
- aspectx - Horizontal aspect of the TOP.
- aspecty - Vertical aspect of the TOP.
- depth - Depth of 2D or 3D array if this TOP contains a 2D or 3D texture array.
- gpu_memory_used - Total amount of texture memory used by this TOP.
Common Operator Info Channels
- total_cooks - Number of times the operator has cooked since the process started.
- cook_time - Duration of the last cook in milliseconds.
- cook_frame - Frame number when this operator was last cooked relative to the component timeline.
- cook_abs_frame - Frame number when this operator was last cooked relative to the absolute time.
- cook_start_time - Time in milliseconds at which the operator started cooking in the frame it was cooked.
- cook_end_time - Time in milliseconds at which the operator finished cooking in the frame it was cooked.
- cooked_this_frame - 1 if operator was cooked this frame.
- warnings - Number of warnings in this operator if any.
- errors - Number of errors in this operator if any.
TouchDesigner Build: