Layout TOP
Summary
The Layout TOP positions multiple input TOPs into rows, columns, or grids. It can either fit all the TOPs into a specific resolution (determined by the Common page) by scaling the inputs, or it can scale its own resolution to be larger to accomodate the native resolution of the inputs.
Each input image gets equal area of the output, and the Fit menu determines how each image fits into its designated area.
Multiple inputs can be wired into the Layout TOP, or the TOP parameter can contain paths to multiple TOPs. In the final layout, the TOPs specified in the TOP parameter will appear before the TOPs of the wired inputs if both are used.
Parameters - Layout Page
top
- Specify the path(s) to a TOP to include in the layout.
scaleres
- When 'off', the resolution of the first wired input is used, or a custom resolution can be specified on the Common page. When 'on' and the output resolution is 'Use Input', the Layout TOP's resolution is the first input's resolution scaled up by number of columns horiontally, and the number of rows vertically. For example, if there are 4 input textures and the first one is 1280x720 and Align Left to Right is selected, then the grid size is 4x1 and so the final resolution will be 5120x720 (ie. (1280*4)x(720*1)). However whether off or on, each texture gets an allotted space of the same size. How the texture fits into that space is determined using the Fit parameter.
align
- ⊞ - The menu determines how the inputs are laid out, in row, column , or grid format.
- None
none
-
- Left to Right
horizlr
-
- Right to Left
horizrl
-
- Top to Bottom
verttb
-
- Bottom to Top
vertbt
-
- Grid Rows
gridrows
-
- Grid Columns
gridcols
-
fit
- ⊞ - Determines how the input images are fit to the space they are given. Depending on the setting, it will either fit the entire image inside the space given or crop some of the image off.
- Fill
fill
-
- Fit Horizontal
fithorz
-
- Fit Vertical
fitvert
-
- Fit Best
fitbest
-
- Fit Outside
fitoutside
-
- Native Resolution
nativeres
-
maxrows
- Maximum number of rows until a new column is started.
maxcols
- Maximum number of columns until a new row is started.
bcolor
- ⊞ - The color of the border around each input.
- Red
bcolorr
-
- Green
bcolorg
-
- Blue
bcolorb
-
- Alpha
bcolora
-
borders
- ⊞ - The border width for each input. The borders will scale down the input.
- Left
bordersl
-
- Right
bordersr
-
- Bottom
bordersb
-
- Top
borderst
-
bgcolor
- ⊞ - Color and alpha for the space not covered by the input images.
- Red
bgcolorr
-
- Green
bgcolorg
-
- Blue
bgcolorb
-
- Alpha
bgcolora
-
premultrgbbyalpha
- This option allows the Background Color to be pre-multiplied by alpha.
compover
- Fill any area with the background color if it has alpha less than 1.
Parameters - Transform Page
xord
- ⊞ - The menu attached to this parameter allows you to specify the order in which the changes to your inputs will take place. Changing the Transform order will change where things go much the same way as going a block and turning east gets you to a different place than turning east and then going a block.
- Scale Rotate Translate
srt
-
- Scale Translate Rotate
str
-
- Rotate Scale Translate
rst
-
- Rotate Translate Scale
rts
-
- Translate Scale Rotate
tsr
-
- Translate Rotate Scale
trs
-
t
- ⊞ - The two fields for Translate allows you to specify transforms in x and y axes for each input image.
- X
tx
-
- Y
ty
-
tunit
-
rotate
- The field for rotation allows you to specify the amount of rotation for each input image.
s
- ⊞ - The two fields for Scale allows you to specify transforms in x and y axes for each input image.
- X
sx
-
- Y
sy
-
legacyxform
- When enabled, will use the legacy method of building the transform matrix, which has inverted rotation and transform order.
Parameters - Common Page
outputresolution
- ⊞ - quickly change the resolution of the TOP's data.
- Use Input
useinput
- Uses the input's resolution.
- Eighth
eighth
- Multiply the input's resolution by that amount.
- Quarter
quarter
- Multiply the input's resolution by that amount.
- Half
half
- Multiply the input's resolution by that amount.
- 2X
2x
- Multiply the input's resolution by that amount.
- 4X
4x
- Multiply the input's resolution by that amount.
- 8X
8x
- Multiply the input's resolution by that amount.
- Fit Resolution
fit
- Fits the width and height to the resolution given below, while maintaining the aspect ratio.
- Limit Resolution
limit
- The width and height are limited to the resolution given below. If one of the dimensions exceeds the given resolution, the width and height will be reduced to fit inside the given limits while maintaining the aspect ratio.
- Custom Resolution
custom
- Enables the Resolution parameter below, giving direct control over width and height.
resolution
- ⊞ - Enabled only when the Resolution parameter is set to Custom Resolution. Some Generators like Constant and Ramp do not use inputs and only use this field to determine their size. The drop down menu on the right provides some commonly used resolutions.
- W
resolutionw
-
- H
resolutionh
-
resmult
- Uses the Global Resolution Multiplier found in Edit>Preferences>TOPs. This multiplies all the TOPs resolutions by the set amount. This is handy when working on computers with different hardware specifications. If a project is designed on a desktop workstation with lots of graphics memory, a user on a laptop with only 64MB VRAM can set the Global Resolution Multiplier to a value of half or quarter so it runs at an acceptable speed. By checking this checkbox on, this TOP is affected by the global multiplier.
outputaspect
- ⊞ - Sets the image aspect ratio allowing any textures to be viewed in any size. Watch for unexpected results when compositing TOPs with different aspect ratios. (You can define images with non-square pixels using xres, yres, aspectx, aspecty where xres/yres != aspectx/aspecty.)
- Use Input
useinput
- Uses the input's aspect ratio.
- Resolution
resolution
- Uses the aspect of the image's defined resolution (ie 512x256 would be 2:1), whereby each pixel is square.
- Custom Aspect
custom
- Lets you explicitly define a custom aspect ratio in the Aspect parameter below.
aspect
- ⊞ - Use when Output Aspect parameter is set to Custom Aspect.
- Aspect1
aspect1
-
- Aspect2
aspect2
-
inputfiltertype
- ⊞ - This controls pixel filtering on the input image of the TOP.
- Nearest Pixel
nearest
- Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
- Interpolate Pixels
linear
- Uses linear filtering between pixels. This is how you get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
- Mipmap Pixels
mipmap
- Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.
fillmode
- ⊞ - Determine how the TOP image is displayed in the viewer.
NOTE:To get an understanding of how TOPs work with images, you will want to set this to Native Resolution as you lay down TOPs when starting out. This will let you see what is actually happening without any automatic viewer resizing.
- Use Input
useinput
- Uses the same Fill Viewer settings as it's input.
- Fill
fill
- Stretches the image to fit the edges of the viewer.
- Fit Horizontal
width
- Stretches image to fit viewer horizontally.
- Fit Vertical
height
- Stretches image to fit viewer vertically.
- Fit Best
best
- Stretches or squashes image so no part of image is cropped.
- Fit Outside
outside
- Stretches or squashes image so image fills viewer while constraining it's proportions. This often leads to part of image getting cropped by viewer.
- Native Resolution
nativeres
- Displays the native resolution of the image in the viewer.
filtertype
- ⊞ - This controls pixel filtering in the viewers.
- Nearest Pixel
nearest
- Uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
- Interpolate Pixels
linear
- Uses linear filtering between pixels. Use this to get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
- Mipmap Pixels
mipmap
- Uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.
npasses
- Duplicates the operation of the TOP the specified number of times. Making this larger than 1 is essentially the same as taking the output from each pass, and passing it into the first input of the node and repeating the process. Other inputs and parameters remain the same for each pass.
chanmask
- Allows you to choose which channels (R, G, B, or A) the TOP will operate on. All channels are selected by default.
format
- ⊞ - Format used to store data for each channel in the image (ie. R, G, B, and A). Refer to Pixel Formats for more information.
- Use Input
useinput
- Uses the input's pixel format.
- 8-bit fixed (RGBA)
rgba8fixed
- Uses 8-bit integer values for each channel.
- sRGB 8-bit fixed (RGBA)
srgba8fixed
- Uses 8-bit integer values for each channel and stores color in sRGB colorspace.
- 16-bit float (RGBA)
rgba16float
- Uses 16-bits per color channel, 64-bits per pixel.
- 32-bit float (RGBA)
rgba32float
- Uses 32-bits per color channel, 128-bits per pixels.
- 10-bit RGB, 2-bit Alpha, fixed (RGBA)
rgb10a2fixed
- Uses 10-bits per color channel and 2-bits for alpha, 32-bits total per pixel.
- 16-bit fixed (RGBA)
rgba16fixed
- Uses 16-bits per color channel, 64-bits total per pixel.
- 11-bit float (RGB), Positive Values Only
rgba11float
- A RGB floating point format that has 11 bits for the Red and Green channels, and 10-bits for the Blue Channel, 32-bits total per pixel (therefore the same memory usage as 8-bit RGBA). The Alpha channel in this format will always be 1. Values can go above one, but can't be negative. ie. the range is [0, infinite).
- 16-bit float (RGB)
rgb16float
-
- 32-bit float (RGB)
rgb32float
-
- 8-bit fixed (Mono)
mono8fixed
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 8-bits per pixel.
- 16-bit fixed (Mono)
mono16fixed
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
- 16-bit float (Mono)
mono16float
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
- 32-bit float (Mono)
mono32float
- Single channel, where RGB will all have the same value, and Alpha will be 1.0. 32-bits per pixel.
- 8-bit fixed (RG)
rg8fixed
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 8-bits per channel, 16-bits total per pixel.
- 16-bit fixed (RG)
rg16fixed
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
- 16-bit float (RG)
rg16float
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
- 32-bit float (RG)
rg32float
- A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 32-bits per channel, 64-bits total per pixel.
- 8-bit fixed (A)
a8fixed
- An Alpha only format that has 8-bits per channel, 8-bits per pixel.
- 16-bit fixed (A)
a16fixed
- An Alpha only format that has 16-bits per channel, 16-bits per pixel.
- 16-bit float (A)
a16float
- An Alpha only format that has 16-bits per channel, 16-bits per pixel.
- 32-bit float (A)
a32float
- An Alpha only format that has 32-bits per channel, 32-bits per pixel.
- 8-bit fixed (Mono+Alpha)
monoalpha8fixed
- A 2 channel format, one value for RGB and one value for Alpha. 8-bits per channel, 16-bits per pixel.
- 16-bit fixed (Mono+Alpha)
monoalpha16fixed
- A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
- 16-bit float (Mono+Alpha)
monoalpha16float
- A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
- 32-bit float (Mono+Alpha)
monoalpha32float
- A 2 channel format, one value for RGB and one value for Alpha. 32-bits per channel, 64-bits per pixel.
Operator Inputs
- Input 0: -
Info CHOP Channels
Extra Information for the Layout TOP can be accessed via an Info CHOP.
Common TOP Info Channels
- resx - Horizontal resolution of the TOP in pixels.
- resy - Vertical resolution of the TOP in pixels.
- aspectx - Horizontal aspect of the TOP.
- aspecty - Vertical aspect of the TOP.
- depth - Depth of 2D or 3D array if this TOP contains a 2D or 3D texture array.
- gpu_memory_used - Total amount of texture memory used by this TOP.
Common Operator Info Channels
- total_cooks - Number of times the operator has cooked since the process started.
- cook_time - Duration of the last cook in milliseconds.
- cook_frame - Frame number when this operator was last cooked relative to the component timeline.
- cook_abs_frame - Frame number when this operator was last cooked relative to the absolute time.
- cook_start_time - Time in milliseconds at which the operator started cooking in the frame it was cooked.
- cook_end_time - Time in milliseconds at which the operator finished cooking in the frame it was cooked.
- cooked_this_frame - 1 if operator was cooked this frame.
- warnings - Number of warnings in this operator if any.
- errors - Number of errors in this operator if any.
TouchDesigner Build: