Copy SOP
Summary
The Copy SOP lets you make copies of the geometry of other SOPs and apply a transformation to each copy.
It also allows you to copy geometry to points on an input template.
Contents
Parameters  Copy Page
Specifies a subset of template primitives from which to copy onto. Accepts patterns, as described in Pattern Matching.
Source Group sourcegrp
 Specifies a subset of input primitives to copy from. Accepts patterns, as described in Pattern Matching.
Template Group templategrp
 Specifies a subset of template primitives from which to copy onto. Accepts patterns, as described in Pattern Matching.
Number of Copies ncy
 Sets number of Copies to be made of the source. For a template input, it specifies the number of copies to be placed at each point of the template.
Primitives per Point nprims
 Defines how many primitives to copy from each point.
Rotate to Normal nml
 Only used when a template input is specified. If the template is a sphere, and the first input is a circle, a circle is placed at each point of the sphere. With this option on, all the circles will reorient to face the surface of the sphere (a default sphere has normals radiating outwards from the center).
If an up attribute exists on the template geometry, then this will be used (along with the normal) to fully define the rotates for the copies. An up attribute is created with the Point SOP.
Transform Cumulative cum
 Each transformation "builds" on the location left by the one before it. Transformations are cumulative as the Copy SOP produces new copies.
Transform Order xord
 ⊞  Sets the overall transform order for the transformations. The Transform Order determines the order in which transformations take place. Depending on the order, you can achieve different results using the exact same values. Choose the appropriate order from the menu.
 Scale Rotate Translate
srt

 Scale Translate Rotate
str

 Rotate Scale Translate
rst

 Rotate Translate Scale
rts

 Translate Scale Rotate
tsr

 Translate Rotate Scale
trs

Rotate Order rord
 ⊞  Sets the order of the rotations within the overall transform order.
 Rx Ry Rz
xyz

 Rx Rz Ry
xzy

 Ry Rx Rz
yxz

 Ry Rz Rx
yzx

 Rz Rx Ry
zxy

 Rz Ry Rx
zyx

Translate t
 ⊞  These allow you to specify the Translation (how much it moves over in a given direction), Rotation, and the Scale between each copy. Three columns are given for X, Y, and Z coordinates. Guide geometry is provided for the Pivot's translations. The Pivot is represented by a single red dot in the Viewport. Changing the Pivot parameters moves this point of reference.
 X
tx

 Y
ty

 Z
tz

Rotate r
 ⊞  These allow you to specify the Translation (how much it moves over in a given direction), Rotation, and the Scale between each copy. Three columns are given for X, Y, and Z coordinates. Guide geometry is provided for the Pivot's translations. The Pivot is represented by a single red dot in the Viewport. Changing the Pivot parameters moves this point of reference.
 X
rx

 Y
ry

 Z
rz

Scale s
 ⊞  These allow you to specify the Translation (how much it moves over in a given direction), Rotation, and the Scale between each copy. Three columns are given for X, Y, and Z coordinates. Guide geometry is provided for the Pivot's translations. The Pivot is represented by a single red dot in the Viewport. Changing the Pivot parameters moves this point of reference.
 X
sx

 Y
sy

 Z
sz

Pivot p
 ⊞  These allow you to specify the Translation (how much it moves over in a given direction), Rotation, and the Scale between each copy. Three columns are given for X, Y, and Z coordinates. Guide geometry is provided for the Pivot's translations. The Pivot is represented by a single red dot in the Viewport. Changing the Pivot parameters moves this point of reference.
 X
px

 Y
py

 Z
pz

Uniform Scale scale
 Uniform Scale allows you to shrink or enlarge geometry along all three axes simultaneously.
Normals Maintain Length vlength
 Vector type attributes (i.e. normals, velocity) maintain the same length under transforms. i.e. When geometry is scaled, the normals remain constant in length.
Create Output Groups newg
 If selected, this creates a group for each copy number, and places each primitive created at that stage into it.
Copy Groups copyg
 Defines the base name of the groups created.
Look At lookat
 Orients the copied geometry to lookat, or point to, the object component specified in the parameter.
Up Vector upvector
 ⊞  When specifying a Look At, it is possible to specify an up vector for the lookat. Without using an up vector, it is possible to get poor animation when the lookat object passes through the Y axis of the target object.
 X
upvectorx

 Y
upvectory

 Z
upvectorz

Parameters  Stamp Page
Stamping is allowed in any parameter in TouchDesigner. The only requirement is that the stamped parameter is upstream in some fashion from the Copy SOP doing the stamping.
Stamp Inputs stamp
 When enabled, it will Stamp proceeding variables for each input copied.
Param 1 param1
 Token of each stamp variable. Stamped parameters are accessible via the global fetchStamp()
method in the td Module in python, or param()
in tscript. See the example, below.
Value 1 val1
 Value of each stamp variable. Stamped parameters are accessible via the global fetchStamp()
method in the td Module in python, or param()
in tscript. See the example, below.
Parameters  Attributes Page
This page allows you to determine how point attributes on template geometry affect attributes on the source geometry. The template attribute can modify the source in four ways:
 Set  Override the source attribute.
 Multiply  Multiply the source attribute.
 Add  Get Added to the source attribute.
 Sub  Get Subtracted from the source attribute.
The template point attributes are able to affect point, primitive, or vertex attributes in the source geometry simply by entering values in the appropriate fields.
Use Template Point Attribs doattr

Copy to Point setpt
 ⊞ 
 *
*

Copy to Primitive setprim
 ⊞ 
 *
*

Copy to Vertex setvtx
 ⊞ 
 *
*

Multiply Point mulpt
 ⊞ 
 *
*

Multiply Primitive mulprim
 ⊞ 
 *
*

Multiply Vertex mulvtx
 ⊞ 
 *
*

Add Point addpt
 ⊞ 
 *
*

Add Primitive addprim
 ⊞ 
 *
*

Add Vertex addvtx
 ⊞ 
 *
*

Subtract Point subpt
 ⊞ 
 *
*

Subtract Primitive subprim
 ⊞ 
 *
*

Subtract Vertex subvtx
 ⊞ 
 *
*

Tips
You can use the me.copyTotal
python member to calculate the degrees of rotation for a given number of copies. For example, if you have 28 copies, you can set the rotation to be: 360/me.copyTotal
 this would automatically give you 12.8571 degrees, evenly spacing your 28 copies around the full circumference of the circle.
Using a Particle SOP as the Template object, you can copy objects defined in the Copy Data input to each particle template. This allows you, for example, to copy a Bee to each particle to create a swarm of bees.
Make a series of copies about an axis, and skin them to achieve lathelike effects, similar to the results achieved with the Revolve SOP.
Examples
Creating Stamped Geometry
 Place a Circle SOP, and set its type to Polygon.
 Set the number of Divisions in the Circle to:
fetchStamp("sides",3)
The methodfetchStamp()
returns the value of the global parameter sides. If it is not yet defined it will return a value of 3.  Append a Copy SOP, and set the Number of Copies to
5
; and set Translate X to:2.5
.  In the Stamp page of the Copy SOP, turn on Stamp Inputs. Set Param 1 to:
sides
andme.copyIndex+3
 This creates a triangle on the first stamped copy; a square on the next; a pentagon on the third, and so on. The geometry for each copy is cooked separately.
You can set multiple stamp Params at once and they can be used anywhere in the ancestry of the copy's input.
Operator Inputs
 Input 0 
 Input 1 
TouchDesigner Build: